- บทความนี้เกี่ยวกับนิยามทั่วไปของกราฟ สำหรับรายละเอียดอื่น ๆ ดูที่ ทฤษฎีกราฟ
- สำหรับความหมายอื่นในทางคณิตศาสตร์ ดูที่ กราฟของฟังก์ชัน และกราฟของความสัมพันธ์
นิยาม
การให้นิยามในทฤษฎีกราฟมีความแตกต่างกันบ้าง ด้านล่างนี้คือมาตรฐานที่ใช้ในสารานุกรมนี้
กราฟไม่ระบุทิศทาง หรือ กราฟ G คือคู่อันดับ G:=(V, E) ที่
- V คือ เซต ของ จุดยอด (vertices) หรือ จุด (nodes)
- E คือ เซตของคู่ของจุดยอดที่แตกต่างกัน ซึ่งแต่ละอันเรียกว่า เส้นเชื่อม (edges) หรือ เส้น (lines)
- จุดยอดที่ติดกับเส้นเชื่อมเรียกว่า จุดยอดปลาย (end vertices) ของเส้นเชื่อม
กราฟระบุทิศทาง
กราฟระบุทิศทาง (directed graph) หรือ ไดกราฟ G คือคู่อันดับ G:=(V, A) ที่
- V คือ เซต ของ จุดยอด (vertices) หรือ จุด (nodes)
- A คือ เซตของคู่ลำดับของจุดยอด ซึ่งแต่ละอันเรียกว่า เส้นเชื่อมระบุทิศทาง (directed edges), เส้นเชื่อม (arcs) หรือ ลูกศร (arrows). เส้นเชื่อม e = (x, y) จะถูกพิจารณาว่าเป็นเส้นเชื่อม จาก x ไป y โดยที่ y จะถูกเรียกว่า หัว (head) และ x จะถูกเรียกว่า หาง (tail) ของเส้นเชื่อม
กราฟผสม
กราฟผสม G คือ สามสิ่งอันดับ (3-tuple) G:=(V,E,A) ที่ V, E และ A เหมือนดังนิยามด้านบน
การนิยามที่แตกต่างไป
จากนิยามข้างต้น เส้นเชื่อมในกราฟไม่มีทิศทางจะต้องมีจุดปลายที่แตกต่างกัน นอกจากนี้ E และ A ยังเป็นเซต (ที่มีสมาชิกแตกต่างกัน) อย่างไรก็ตามในหลายๆ การประยุกต์ใช้ เราจะใช้นิยามที่กว้างกว่านี้เราสามารถมี วงวน (loop) ที่หมายถึงเส้นเชื่อมที่มีจุดปลายเป็นจุดเดียวกัน ซึ่งการอนุญาตให้มีวงวนหรือไม่ขึ้นกับแต่ละการประยุกต์ใช้งาน
บางครั้ง E หรือ A สามารถเป็นมัลติเซต ซึ่งทำให้มีเส้นเชื่อมจุดปลายคู่ใด ๆ มากกว่าหนึ่งเส้นได้ เมื่อกล่าวถึง "กราฟ" ผู้เขียนอาจหมายถึงกราฟที่อนุญาตให้มีเส้นเชื่อมซ้ำกันหรือไม่ก็ได้ อย่างไรก็ตาม ถ้าต้องการระบุให้ชัดเจนว่ากราฟนั้นไม่มีเส้นเชื่อมซ้ำกัน จะเรียกกราฟนั้นว่ากราฟ กราฟเชิงเดียว (simple graph) ในทางกลับกันสำหรับกราฟที่อนุญาตให้มีเส้นเชื่อมซ้ำกันได้จะเรียกกราฟนั้นว่า มัลติกราฟ (multigraph) บางครั้งก็มีการใช้คำว่า กราฟจำลอง เพื่อระบุว่ากราฟสามารถมีได้ทั้งเส้นเชื่อมซ้ำและวงวน
คุณลักษณะของกราฟ
เราจะกล่าวว่า
- เส้นเชื่อมสองเส้น ประชิด (adjacent) กัน ถ้าเส้นเชื่อมทั้งสองมีจุดปลายร่วมกัน
- จุดยอดสองจุด ประชิด กัน ถ้าจุดยอดทั้งสองเป็นจุดปลายของเส้นเชื่อมเดียวกัน
- เส้นเชื่อม ต่อ (incident) กับจุดปลายของเส้นเชื่อมเสมอ
กราฟถ่วงน้ำหนัก (weighted graph) คือ กราฟที่มีการกำหนดค่าให้กับเส้นเชื่อมแต่ละเส้น ซึ่งอาจเป็น ค่าใช้จ่าย, น้ำหนัก, ความยาว หรืออื่นๆขึ้นกับการใช้งาน กราฟถ่วงน้ำหนักนำไปใช้ในการแก้ปัญหาหลายๆอย่าง เช่น ปัญหาเส้นทางที่ดีที่สุด เป็นต้น
โดยทั่วไปแล้วจุดยอดของกราฟนั้นจะไม่สามารถถูกแยกแยะ หรือพิจารณาว่าแตกต่างกันได้ (ยกเว้นในบางกรณีเช่นมีจำนวนเส้นเชื่อมที่แตกต่างกันเป็นต้น) อย่างไรก็ตาม บางสาขาของทฤษฎีกราฟต้องการให้ระบุจุดยอดที่ชัดเจนได้ ถ้าแต่ละจุดยอดมีการระบุชื่อที่ชัดเจน (มี label) กำกับ เราจะเรียกกราฟเหล่านั้นนั้นว่า กราฟระบุชื่อ (labeled graph) ในกรณีที่ไม่มีการระบุชื่อจะเรียกกราฟว่า กราฟไม่ระบุชื่อ
ที่ทา wikipedia
ไม่มีความคิดเห็น:
แสดงความคิดเห็น