จากวิกิพีเดีย สารานุกรมเสรี
ในทางคณิตศาสตร์ สมการกำลังสอง (สมการควอดราติก) คือสมการของพหุนามตัวแปรเดียวที่มีดีกรีเท่ากับ 2 รูปแบบทั่วไปของสมการกำลังสองคือ
สูตรกำลังสอง
สมการกำลังสองใดๆ ที่มีสัมประสิทธิ์เป็นจำนวนจริง (หรือจำนวนเชิงซ้อน) จะมีรากของสมการ 2 คำตอบเสมอ ซึ่งอาจจะเท่ากันก็ได้ โดยที่รากของสมการสามารถเป็นได้ทั้งจำนวนจริงหรือจำนวนเชิงซ้อน สามารถคำนวณได้จากสูตร
ดิสคริมิแนนต์
ดิสคริมิแนนต์เป็นตัวบ่งบอกว่าสมการกำลังสองจะมีคำตอบของสมการเป็นประเภทใดประเภทหนึ่ง ดังต่อไปนี้
การแยกตัวประกอบ
พจน์นี้
สูตรกำลังสอง
สมการกำลังสองใดๆ ที่มีสัมประสิทธิ์เป็นจำนวนจริง (หรือจำนวนเชิงซ้อน) จะมีรากของสมการ 2 คำตอบเสมอ ซึ่งอาจจะเท่ากันก็ได้ โดยที่รากของสมการสามารถเป็นได้ทั้งจำนวนจริงหรือจำนวนเชิงซ้อน สามารถคำนวณได้จากสูตร
ดิสคริมิแนนต์
จากสูตรด้านบน นิพจน์ที่อยู่ภายใต้เครื่องหมายรากที่สอง
-
- Δ
ดิสคริมิแนนต์เป็นตัวบ่งบอกว่าสมการกำลังสองจะมีคำตอบของสมการเป็นประเภทใดประเภทหนึ่ง ดังต่อไปนี้
- ถ้าดิสคริมิแนนต์เป็นค่าบวก ดังนั้นจะมีรากของสมการ 2 ค่าที่แตกต่างกัน และเป็นจำนวนจริงทั้งคู่ สำหรับกรณีที่สัมประสิทธิ์เป็นจำนวนเต็ม และดิสคริมิแนนต์เป็นกำลังสองสมบูรณ์ ดังนั้นรากของสมการจะเป็นจำนวนตรรกยะ ส่วนในกรณีอื่นจะเป็นจำนวนอตรรกยะ
- ถ้าดิสคริมิแนนต์เป็นศูนย์ ดังนั้นจะมีรากของสมการ 2 ค่าที่เท่ากัน (หรือมีเพียงค่าเดียว) และเป็นจำนวนจริง รากของสมการนี้จะมีค่าเท่ากับ
- ถ้าดิสคริมิแนนต์เป็นค่าลบ จะไม่มีคำตอบเป็นจำนวนจริง แต่จะเป็นจำนวนเชิงซ้อน 2 จำนวนที่ต่างกัน ซึ่งเป็นสังยุคของกันและกัน นั่นคือ
- x
การแยกตัวประกอบ
พจน์นี้
ไม่มีความคิดเห็น:
แสดงความคิดเห็น